RADIATION CONTAMINATION FOUND IN IMPORTED FOOD FROM JAPAN

On March 19, 2011 Japanese government found radiation contamination in milk and spinach resulting from the disaster at Fukushima Daiichi nuclear power plant. Because of the concern for human consumption of food products with radionuclides, the U.S and several countries in Asia such as South Korea, Indonesia, Thailand, Malaysia, India, Singapore and Philippines have begun strictly monitoring iodine-131 (I-131) and cesium-137 (Cs-137) contamination from imported Japanese food products.

Many people in the world have been worried the effect of radioactive contamination to the environment and food chain after the nuclear accident in Japan. I-131 and Cs-137 are the main fission byproducts which are released and can cause the cancer in human. I-131 moves through the atmosphere more easily than Cs-137, but it has a half-life of only eight days whereas Cs-137 attaches itself directly to the particle and deposits into soil for long period of time. The half-life of Cs-137 is about 30 years. Both radionuclides can accumulate in plants, fruits, vegetables, and crops, when they are ingested by animal or human which leads to an unsafe food supply chain.

To assure that such foods are safe, the Ministry of Health, Labor and Welfare (MHLW) of Japan provided Notice No. 0317 Article 3 on March 17, 2011 which informs the inspectors that they shall conduct radionuclide investigation using the “Manual for Measuring Radioactivity of Foods in Case of Emergency” dated May 9, 2002. Guideline level for each radionuclide in food and drinking water are shown in Table 1. The U.S. Food and Drug Administration (FDA) additionally monitors Japanese food for radiation based on Compliance Policy Guide (CPG) 7119.14. The guidance levels for radionuclide activity concentration, called derived intervention levels (DILs), as indicated in Table 2. Besides Asia countries and U.S., European Union (EU) urges its members to check on food from Japan based on Council Regulation (EEC) No. 737/90. They are to check the accumulated maximum radioactive levels in term of Cs-134 and Cs-137 as shown in Table 3.

1. Food Contamination Observed up to 90 miles from Fukushima, March 19, 2011
2. Iodine-131 and Cesium-137
TABLE 1 Indices relating to limits on food and drink ingestion³

<table>
<thead>
<tr>
<th>NUCLIDE</th>
<th>INDEX VALUES RELATING TO INGESTION LIMITS IN GUIDELINES FOR COPING WITH DISASTERS AT NUCLEAR FACILITIES ETC. (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioactive Iodine (Representative radio-nuclides among mixed radio-nuclides: 131I)</td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td>300</td>
</tr>
<tr>
<td>Milk dairy products⁴</td>
<td></td>
</tr>
<tr>
<td>Vegetables (Except root vegetables and tubers)</td>
<td>2000</td>
</tr>
<tr>
<td>Radioactive cesium</td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td>200</td>
</tr>
<tr>
<td>Milk, dairy products</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>500</td>
</tr>
<tr>
<td>Grain</td>
<td></td>
</tr>
<tr>
<td>Meat, eggs, fish etc.</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
</tr>
<tr>
<td>Infant foods</td>
<td>20</td>
</tr>
<tr>
<td>Drinking water</td>
<td></td>
</tr>
<tr>
<td>Milk, dairy products</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>100</td>
</tr>
<tr>
<td>Grains</td>
<td></td>
</tr>
<tr>
<td>Meat, eggs, fish etc.</td>
<td></td>
</tr>
<tr>
<td>Alpha-emitting nuclides of plutonium and transuranic elements (Total radioactive concentration of 238Pu, 239Pu, 240Pu, 241Am, 242Cm, 243Cm, 244Cm)</td>
<td></td>
</tr>
<tr>
<td>Infant foods</td>
<td>1</td>
</tr>
<tr>
<td>Drinking water</td>
<td></td>
</tr>
<tr>
<td>Milk, dairy products</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>10</td>
</tr>
<tr>
<td>Grains</td>
<td></td>
</tr>
<tr>
<td>Meat, eggs, fish etc.</td>
<td></td>
</tr>
</tbody>
</table>

³ Handling of food contaminated by radioactivity. Director-General, Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare

⁴ Provide guidance so that materials exceeding 100 Bq/kg are not used in milk supplied for use in powdered baby formula or for direct drinking to baby.
TABLE 2 Derived Intervention Levels (DILs) for Each Radionuclide Group for Food in Domestic Commerce and Food Offered for Import

<table>
<thead>
<tr>
<th>RADIONUCLIDE GROUP</th>
<th>DIL (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strontium-90</td>
<td>160</td>
</tr>
<tr>
<td>Iodine-131</td>
<td>170</td>
</tr>
<tr>
<td>Cesium-134 + Cesium-137</td>
<td>1200</td>
</tr>
<tr>
<td>Plutonium-238 + Plutonium-239 + Americium-241</td>
<td>2</td>
</tr>
<tr>
<td>Ruthenium-103 + Ruthenium-106(^a)</td>
<td>((C3 / 6800) + (C6 / 450) < 1)</td>
</tr>
</tbody>
</table>

TABLE 3 The accumulated maximum radioactive level in food according to Council Regulation (EEC) No. 737/90.

<table>
<thead>
<tr>
<th>RADIONUCLIDE GROUP</th>
<th>FOOD</th>
<th>THE ACCUMULATED MAXIMUM RADIOACTIVE LEVEL (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-134 + Cesium-137</td>
<td>Milk</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Milk products</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Foodstuffs intended for special feeding of infants during the first four to six month of life</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Other food products</td>
<td>600</td>
</tr>
</tbody>
</table>

Throughout SGS global network, we can help you to check radioactive contamination in your food products by carrying out measurements on a wide range of radionuclides. To guarantee food safety, our laboratories utilize state-of-the-art high resolution instrument for radionuclide determination. If you need more information, please don’t hesitate to contact us.

\(^{a}\) FDA/ORA CPG 7119.14